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Abstract 

The behavior of an inhomogeneous superconductor in an external a.c. field 

is studied. General equations describing the a.c. response are formulated. 

Special attention is paid to the case of a layered conductor containing 

superconducting “islands”. A system of this type displays “pseudogap” 

properties. The surface impedance Z is evaluated. It is shown that the  

ReZ ≠ |ImZ| and their difference ∆  is the frequency of the a.c. 

field. 

Z ∝ω −1/ 2, ω

I. Introduction. 

This paper is concerned with the a.c. response of an inhomogeneous 

superconductor. The study is a continuation of the analysis presented in our 

papers [1], [ 2] . We have developed a model describing a peculiar state 
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which displays normal d.c. resistivity side by side with superconducting 

properties such as a gap structure, diamagnetism, isotope effect, loss of 

entropy, etc. This state is inhomogeneous , and the critical temperature is 

spatially dependent, so that Tc=Tc(r). At temperatures above Tcres. (Tcres.  

corresponds to the transition in the dissipationless state; a detailed 

description is given in our paper [1]), the sample contains a set of 

superconducting regions (“islands”) embedded in a normal metallic matrix. 

An increase in temperature leads to a decrease in the number of such 

clusters and a decrease in their size; the picture persists up to an upper 

characteristic temperature Tc*. The  normal matrix provides   a finite normal 

resistance whereas the presence of the “islands”  and the corresponding 

gap parameters results in gap structure, diamagnetic moment, etc.  

 The size of the superconducting clusters depends on 

temperature.The clusters appear at the upper characteristic temperature Tc* 

and their initial size is of order of the coherence length ξ0 ( for the cuprates  

ξ0=15-20A).This lowest limit is determined by the proximity effect.Indeed,the 

superconducting state of the region  smaller than the coherence length would be 

destroyed by the proximity contact with the normal matrix. As was noted 

above,each “island” has its own phase.Decrease in temperature below Tc* leads 

to an increase in a number of clusters and, consequently, to an effective increase 

in their size.Indeed, the system is inhomogeneous and increase in a number of 

“islands” leads to some of them being at short distances (< ξ0 ).This provides the 

coupling between them (S-N-S Josephson contact) and as a result, the phase 

coherence. Eventually, at  T= Tcres. We are dealing with formation of 
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macroscopic region with single phase and macroscopic dissipation less 

current. 

 A system of this type will display peculiar a.c. response and, 

correspondingly, unusual microwave properties. This forms the focus of the 

present paper. Since the "islands" are embedded in a normal metallic 

matrix, the proximity effect plays a crucial role ( see [1],[2]) which makes the 

situation different from the usual picture of the phase separation when one 

deals with a mixture of metallic ( or superconducting ) and isolating 

components. Note also that each superconducting “island” is characterized 

by its own phase, so that the phase coherent state for the whole sample 

exists only for T ≤ Tc
res.. 

 Paper [1] contains an evaluation of the density of states (DOS)  for 

such a system. It is shown there that DOS does indeed display a softening 

in the low energy region , and this is a direct manifestation of gap structure. 

The diamagnetic response is calculated in [2]; it is shown that, contrary to 

conventional case, the system is characterized by splitting of  the resistive 

and Meissner transitions. 

 Generally speaking, there are two sources of inhomogeneity. One of 

them is a non-uniform distribution of coupling constants (for example, 

because of a non-uniform doping) which determines the local values of Tc. 

Another possible source is a non-uniform distribution of pair-breakers (e.g. 

magnetic impurities; for the D-wave scenario non-magnetic impurities will 

also act as pair-breakers). Regions with lower concentration of pair-
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breakers have higher values of local Tc . Both possibilities were considered 

in [1] and are studied below.  

 We think that our approach is directly related to the pseudogap 

phenomenon which has been observed in the high Tc oxides by a variety of 

experimental techniques (tunneling [3 - 5], photoemission [6,7], heat 

capacity [8], isotope effect [ 9], observation of diamagnetism above Tc
res  

[10 -12], etc). The same is true for the peculiar surface superconducting 

state observed in the Na-doped WO3 compound [13], for the Pb-Ag 

compound described in [14], for granular films, etc.  

 Diamagnetism above Tc
res.  has been detected in undoped  

La2-xSrxCuO4 (Tc
res. = 18K) by scanning SQUID microscopy [12]. It is 

remarkable that diamagnetic moment persists up to 80K(!). The authors [12] 

observe a highly inhomogeneous picture in the pseudogap region and the 

temperature dependence of the diamagnetic moment is in good agreement 

with that obtained in [2].  

 As is known, the pseudogap state in the cuprates has attracted a  

lot of attention. This state represents a complex phenomenon and can 

originate from a number of factors, but we think that the presence of spatial 

inhomogeneites observed experimentally by neutron spectroscopy [15, 16], 

by STM measurements [17], SQUID STM magnetometry [12] supports our 

proposition that the inhomogeneous structure of the compounds plays an 

important role. It is interesting to note also that according to  

[1, 2], the effects of inhomogeneities are stronger for layered systems than 

for bulk materials. 
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 As far as a.c. response is concerned, it is known that in normal metals 

the real and imaginary parts of the surface impedance are almost equal. 

The situation is entirely different in superconductors (see, e.g., [18]). Below 

we evaluate the a.c. conductivity and the surface impedance for 

inhomogeneous superconducting systems. We will focus on the 

temperature region Tcres.<T<Tc* . As defined above, Tcres. corresponds to 

the transition from the resistive to the dissipationless state, while the gap 

structure disappears  at Tc*.  

 The values of Tcres.  and Tc*  are different for various systems.For 

example, for the underdoped sample of LaSrCuO studied in [12] the values 

of Tcres.=18K and Tc*=80K (Tc* corresponds to disappearance of 

diamagnetic moment).For the underdoped sample Bi2212 studied by 

tunneling spectroscopy in [3] Tcres.=83K and Tc*=200K. 

 The structure of the paper is as follows. Main equations describing 

the behavior of an inhomogeneous superconductor in the a.c. field are 

introduced in Section II. Sections III, IV contain an evaluation of the 

impedance for various types of inhomogenites. The results are discussed in 

Section V.  

II. Main Equations. 
A. Inhomogeneous superconductor in the a.c. field 
 Consider at first, a general case of  inhomogeneous superconducting 

system. To describe such system it is convenient to employ a method of 

integrated Green's functions developed by Eilenberger [19] and, 

independently, by A. Larkin and one of the authors [20]. This method was 
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used to describe thermodynamic and magnetic properties of 

inhomogeneous systems (see [21, 1, 2]). In this paper we focus on the a.c. 

response of such superconductor. Consider, at first, the case when the 

inhomogeneity is caused by a non-uniform distribution of pair-breakers. The 

case of inhomoheneous coupling will be described below (Sec. IV). The 

system is described by the equations (see [1], [2]): 

 

 α∆ −βω n + D / 2( ) α
∂2β
∂r2 − β

∂2α
∂r2

 
 
  

 
= αβΓ        (1’) 

 α2 + β 2 = 1         (1’’) 

 ∆ = 2πT λ β(ωn
ωn > 0
∑ )        (1’’’) 

Here α and β are the usual and the pairing [22] Greens functions 

integrated over energy, D is the diffusion coefficient ( we consider a "dirty" 

case), Γ ≡ Γ(r)= τs
−1 , τ  is a spin-flip relaxation time [23],  ∆ is the order 

parameter.  We are using the method of thermodynamic Green's functions 

(see e.g. [24]), so that ω

s

n = (2n+1)πT. 

 We focus on the high temperature region T , although T . 

The order parameter is small so that ∆<Γ+2πT. As a result, in a first 

approximation, the system (1) has a form: 

> TC
res < TC

*

          (2’) βo = ˆ L −1∆

          (2’’) αo = 1− βo
2 / 2

 ∆ = 2πT λ ˆ L −1

ω n > 0
∑ ∆ − βo / 2( )ωn βo

2( − D / 2( )∂ 2βo
2 / ∂r2)[ ]   (2’’’) 

Here  
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       (3) ˆ L = ωn + Γ r( )− D / 2( )∂2 / ∂r2

Consider an external a.c. field  

    (4) A(r,τ) = exp(−iω0 τ)A(r); ϕ(r,τ) = exp(−iω0τ)ϕ(r)

(A and ϕ  are the vector and scalar potentials, ω0 is the frequency, τ is an 

imaginary time). As was shown by A. Larkin and one of the authors (see 

[25]), in the presence of such field one can write (in the matrix 

representation): 

  (5) 

ˆ G = ˆ G 0 + exp(−iω0τ) ˆ G 1(τ − τ ' ); ˆ ∆ = ˆ ∆ 0 + ˆ ∆ 1 exp −iωoτ( )

ˆ G 0 =
α −iβ
iβ * α

 

 
  

 

 
  , ˆ G 1 =

g1 f1
− f2 g2

 

 
  

 

 
  ; ˆ ∆ 0 = i ˆ σ y∆o; ˆ ∆ 1 =

0 ∆1

−∆2 0

 

 
  

 

 
  

The quantities fi, gi are satisfied by the relations which can be obtained from 

equation for G  (see Appendix) and normalization conditions, and have a 

form: 

ˆ 
1

     (6)

 In order to describe the a.c. response, we need to evaluate the 

current density; the expression for j can be written in the form [25]: 

g1 = −i βf1 +β+f2( )A +
−1; g2 = i β+ f1 + βf 2( )A+

−1

f1 = i βg1 + β+ g2( )A −
−1; f2 = −i β+ g1 + βg2( )A−

−1

α+ = α(ωn + ω0 ); β+ = β(ωn + ω0 ); A ± = α + ± α

 

   

j = πσ T A1
ωn

∑
 
 
 

  
1 −αα + − ββ+( )− 1

2e
T f1 − f2( )

ω n

∑ ∂β
∂r

+

+
1
2e

T β+

∂
∂r

f1 − f2( )
ω n

∑ +
i

2e
T α +

∂
∂r

g1 + g2( )
ω n

∑ +

+
i
2e

T g1 + g2( )
ω n

∑
∂α
∂r

 
 
 

  

   (7) 
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σ is the d.c. conductivity 

Performing an analytical continuation (see Appendix) and using Eq. (6) we 

obtain: 

 
j = iσωA1 − σ ∂ϕ

∂r
−σA1

∆0
2

πT
ψ ' 0.5 + Γ∞ / 2πT( )−

− iσ
2eπT

ψ ' 0.5 + Γ∞ / 2πT( ) ∆0
∂∆1

∂r
− ∆1

∂∆0

∂r
 
 
 

 
 
 

    (8) 

We used also the equation for the scalar potential [25] 

        (9) 2eϕ + iπT g1 + g2( )
n
∑ = 0

Finally, one can write out the equation for the order parameter which follows 

from Eq. (2’’’) 

 

 

  

ln Tc
o

T
 

 
  

 

 
  +ψ 1 2( )−ψ 1/ 2 + Γ r( )

2πT
− iω

4πT
− D

4πT
∂ 2

∂r2

 

 
  

 

 
  

 

 
 
 

 

 
 
 
∆1 =

=
i

πT
ψ ' 1/ 2 +

Γ∞

2πT
 
  

 
  eDA1

∂∆
∂r

+
eD
2

∆divA1

 
 
 

 
 
 +

+πT ∆1
ω n > 0
∑ ωn + Γ∞( )−4

ωn −
D
2

∂ 2

∂r2

 

 
  

 

 
  ∆

2 + I(ω)

  (10) 

 

I(ω ) = − dε th ε + ω
2T

 
  

 
  − th ε

2T
 
  

 
  

 
 
 

 
 
 ∫ W ε( )

−iω − D ∂ 2

∂r2 + ∆2 1
−iε + Γ∞

+
1

iε + Γ∞

 

 
  

 

 
  

 

 
 
 

 

 
 
 

−1

e ϕ + DdivA1( )[ +

+i ∆∆1

2
1

−iε + Γ∞

+ 1
iε + Γ∞

 

 
  

 

 
  −

eD
4

A1
∂∆2

∂r
1

−iε + Γ∞

− 1
iε + Γ∞

 

 
  

 

 
  

2  

 
 
 

  (10’) 

where 

        (10’’) W ε( ) = 2Γ∞∆ ε 2 + Γ∞
2( −1)

 

Eqs.(8) - (10)  along with the   Maxwell equation: 
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 rotrotA1 + ∂ 2A1 / ∂t2( )+ ∂ / ∂t( )∂ϕ / ∂r = 4πj      (11) 

form a general total system of equations determining the a.c. response for 

an inhomogeneous superconducting system.  

 

B. Superconducting regions in a normal matrix 

 Let us now focus on the important case of inhomogeneous system 

when the normal metal contains a set of superconducting “islands”. In the 

region Tc res.<T< Tc *  the order parameter is different from zero inside of 

the "islands" where the concentration  of magnetic impurities and, 

correspondingly ,the value Γ(r), is smaller than in the normal matrix  : 

        (12) Γ(r) = Γ∞ − δΓ(r) ,δΓ > 0

Let us denote ∆  the localized state which exists in the potential δΓ          ˜ (r)

(cf.[1]);  is the lowest eigenvalue and is the solution of the equation:     ˜ µ ˜ ∆ 

       (13) −δΓ(r) − D / 2( ) ∂ 2 / ∂r2( )[ ˜ ∆ = − ˜ µ ̃  ∆ ]
 The solution of the equation (1’’’) for the order parameter can be 

seeked in the form ∆ =  , where ∆  is the normalized eigenfunction for 

Eq.(13).  With the use of Eqs. (1’’’), (13), we obtain the following expression 

for the parameter B  which determines the temperature dependence 

of the order parameter and, correspondingly, the temperature dependence 

of the impedance Z (see below, Eqs. (26)- (28)). 

B˜ ∆

≡ B(T)

˜ 
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B2 = 4πT( )2 ln TC
* / T( )+ ψ 0.5 + γ *( )−ψ 0.5 + γ( )[ ]×

× D /12πT( ){ vψ ' ' ' 0.5 + γ( ) − u ψ ' ' 0.5 + γ( )( +

+ γ / 3( )ψ ' ' ' 0.5 + γ( ))}−1

   (14) 

Here  
γ ≡ γ (T ) = Γ∞ − ˜ µ ( )/ 2πT ; γ * = γ TC

*( ),

u = dr ˜ ∆ 4∫ , v = dr ∂ ˜ ∆ 2 / ∂r( )∫
2
;

the expression for u and v see in the Appendix.  

Eq. (14) is valid if ∆ << Γ+πT. Therefore, for , Eq. (14) holds for a whole 

temperature range: T . 

a ≅ ξ

c
res < T < Tc

*

Near TC
* we obtain  

         (15) B = ˜ B 1 − T / TC
*( 1/ 2)

Expression for B  can be obtained directly from Eqs.(14) and (A.6), see fig.2. ˜ 

 

III. a.c. Response of the Inhomogeneous Superconductor. 
Surface Impedance  

 
A.  Order parameter and a.c. conductivity of inhomogeneous 

layered system.  
 

 Based on Eqs. (8) - (11) one can evaluate the a.c. response of the 

inhomogeneous superconductor. We focus on the most interesting case of 

layered systems. The results for the usual 3D case will be discussed in 

Section IV. 

 Our goal is to calculate the a.c. current for the inhomogeneous 

system, see fig. 1. Let us start with Eq. (10). The solution of this equation 

can be seeked in the form: 
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          (16) ∆1 = ∆1
o + ˜ ∆ 1

where 

         (17) ∆1
o = 2ie A1 r − rj( )( )

i
∑ ∆ j ;

 The summation is taken over all “islands” j, ∆  is the order parameter 

of the j-th island in the absence of the field; ∆ . Substituting Eqs. (16), 

(17) into Eq. (10) we obtain, after some manipulations, the following 

expression for the average value of the a.c. current. 

j

∆1
o˜ 

1 <<

 

j = iσωA1 + σ / πT( )ψ ' 0.5 + Γ∞ / 2πT( )( )×

< A1 rk − r j( )( )
k, j
∑ ∆ k ∂∆ j / ∂r( )> +

 
 
 

  

+ i / e( ) < ˜ ∆ 1 ∂∆ / ∂r( )>}

    (18) 

With the use of Eqs.(13), (18), and  divj=0 (see Appendix), we arrive at the 

following general expression for the current density: 

       j= σeff.E         (19) 

where 

 
σeff = σ 1 + 1

πTA1
2 ψ'

1
2

+
Γ∞

2πT
 
 

 
 − i

ω
< A1 (rk − r j )( )∆k A1

∂∆ j

∂r
 
 
  

 k, j
∑

 

  
 

  > −
 
 
 

− 4πσD −1( )
D

< A1 r − r j( )( )2
∆ j

2

j
∑ >

 
 
 

 (20 ) 

σ is the d.c. conductivity. We assume an isotopic distribution of the 

“islands”. The first term in the square brackets describes the overlap 

between different "islands". This term contributes to the imaginary part of 

the conductivity and, correspondingly, to a difference between the real and 

imaginary parts of the surface impedance (see below). 
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 The second term contains contribution of separate “islands” and 

contains their order parameters. This term determines the temperature 

dependence of the impedance. It essential to note that the imaginary part in 

Eq.(20) contains the ω-1 dependence. The microwave region which is our 

main focus is characterized by low frequency , and the presence of such 

factor leads to a large increase in the imaginary term. 

 Assume that the vector potential is directed along the layers. The 

normalized solution of Eq.(13) is: 

 

 

˜ ∆ = C J0 κρ( ) ; ρ < ρo

˜ ∆ = C J0 κρ0( ) K0 tρ( )
K0 tρ0( )

; ρ > ρo

     (21) 

 

where ρo is the radius of the circle ( “island” ), J0, K0  are the Bessel 

functions, and   

 C = (2π)-1/2   ϕ1
-1/2        (22) 

    (23) 
κ = 2 δΓ − ˜ µ ( )/ D[ ]1 / 2; t = 2 ˜ µ / D( )1/ 2 ,and

ϕn = dρρn

0

ρ0

∫ J0
2 κρ( )+ J0 κρ0( )/ K0 tρ0( )( )2

dρ
ρ0

∞

∫ ρn K0
2 tρ( )

The lowest eigenvalue  can be found from Eq.(13) and is determined by 

the equation: 

˜ µ 

      (24)  J1 κρ0( )/ J0 κρ0( )= t /κ( )K1 tρ0( )/ K0 tρ0( )
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It is interesting that for the 2D case there will be always a solution even with 

small exponential value of  (cf. [26],p. 163 ); it has a form:   ˜ µ 

 

  µ 
2˜ =

D
γ 2ρ0

2

 

 
  

 

 
  exp −2 D /δΓ / ρ0( ) 

where γ  is the Euler constant ≅ 0.58

 With use of Eqs. (15), (20), and (21) we obtain the following 

expression for the a.c. conductivity: 

 

 

σeff = σ1 + iσ 2

σ1 = σ 1+ 1− 4πσD( )/ DTV[ ]Ψ' 0.5 + Γ∞ / 2πT( ) B2 (T )
j

∑ C2ϕ3

 
 
 

  

 
 
 

  

σ2 = σ / 2πTVω( )Ψ ' 0.5 + Γ∞ / 2πT( ) Ikj
k, j
∑

Ikj = π 3/ 2 / 2( ) J0 κρ0( )/ K0 tρ0( )( )2
B2C2 D / 2 ˜ µ ( )1 / 4

×

× rk − rj

3/ 2
exp −t rk − rj( )

  (25) 

where κ, t and C are defined by Eqs. (22), (23), V is the volume of the 

system; the temperature dependence of the conductivity is determined by 

the factor B(T) (see Eq.(14)and fig. 2). It is essential that Eq.(25) contains 

only experimentally measured parameters and can be used for an analysis 

of experimental data (see below). 

 Eq.(25) allows to calculate the surface impedance Z, since  

 

 Z =
ω

4πσ
 
 

 
 

1/2

exp −iπ / 4( )        (26)         
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(see, e.g. , [27]). One can see directly from (25), (26) that, contrary to the 

usual normal metal, the metallic compound which contains superconducting 

“islands”, is characterized by strong inequality: ReZ ≠ |Im Z|. Indeed, for 

normal metals the difference is negligibly small and connected with 

dependence: σ ω ; in our case ωτ . ( ) = σ 0 1 − iωτ tr( −1) tr << 1

 In the temperature region close to TC
*, i.e. (T-TC

*)<<TC
*, the 

expressions for the conductivity σeff and, correspondingly, for the 

impedance, can be simplified and we obtain: 

 

        (27) 
Re Z = ˜ Z n 1 − σ 2 / 2σ1( )[ ]
Im Z = − ˜ Z n 1+ σ2 / 2σ1( )[ ]

Here 

 σ2/2σ1=(s/ω)(TC
*-T)       

 (27’) 

or 

 Re Z = − Im Z − ω −1 2s ˜ Z ( )Tc
* − T( )      (28) 

 

Here . The expression for the parameter s can be obtained 

directly from (25), see below, Eq. (32). Near T

˜ Z n = ω / 8πσ1( 1/ 2)

C
* the concentration of 

superconducting “islands”, nS, is small, and the sum in Eq.(25) contains 

contribution of nearest neighbors only. As a result, the quantity s depends 

exponentially on nS.  
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Note that ReZ = |ImZ| at T≥TC
*. This can be seen directly from (27), 

(28). The inequality ReZ ≠ |ImZ| at T≤TC
* is caused by the presence of 

superconducting “islands” and is described by the second term in Eq.(28). It 

is essential that this term is proportional to ω-1/2. Small value of the 

frequency ω in the microwave region leads this term to make a noticeable 

contribution. In addition, the dependence ∝ω −1/ 2  can be directly measured 

experimentally (see discussion below, Sec. V ).  

B. Stripe-line “islands” 

 Consider different geometry of the “islands”, namely the case when 

they have the stripe-line shape with a width “a”. Then one can see that the 

impedance has a similar frequency and temperature dependences, although  

the numerical factors are different. Indeed, if the dependence Γ(r) is such 

that its change is equal to δΓ inside the “island” (cf. Eq.(12)), when the 

solution of the equation (13) is  

˜ ∆ = A cos κx( ) for |x| < a/2 

and  

˜ ∆ = A cos κa / 2( )exp(ta / 2)exp(−t x )  for |x| > a/2  

(the parameters κ  and t are defined by Eq. (23); we will not write out an 

explicit expression for the normalization constant A). The eigenvalue  is a 

solution of the equation: 

˜ µ 

        (29) tg κa / 2( ) = ˜ µ / δΓ − ˜ µ ( )( 1 / 2)
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The value of  is not equal to zero for any value of a (cf. [26]) and increases 

quickly with increase in a. Indeed  for small a. Based on  

˜ µ 

˜ µ = a2δΓ / 2D

Eq. (20), we obtain, after calculations the following expression (cf. [25]): 

   (30) 

σeff = σ 1 + B2{ ψ ' 0.5 + Γ∞ / 2πT( )/ 2πTV ×

× i /ω( )[ dkj / t( )
kj
∑ cosϕkjC

2 cos2 κa / 2( )exp −tdkj( )×

× sin−1ϕkj 1 − cosϕkj( )−1
1 − exp −bjtsinϕkj / 2( )( )−(

− exp −tdkj cosϕkj 1 − cosϕkj( )( )1 − exp −bjt sinϕkj x / 2( )x −1( )+

1 − 4πσD( ) 12D( )−1) bj
3

j
∑

 

 
 
 

 
 
 

  

where . x = sin2 ϕkj + cosϕkj

The main contribution to the sum in (30) comes from small angles ϕ . The 

averaging over angles (we assume an isotropic distribution of stripes) leads 

to the result: 

kj

 

σeff = σ 1 + B2ψ '{ 0.5 + Γ∞ / 2πT( )/ 2πTV ×

× i / πω( )C2[ cos2 κa / 2( ) dkj dkj + t −1( )
kj
∑ exp −tdkj( )ln bjt( )+

+ 1 − 4πσD( ) /12D( ) bj
3

j
∑

 

 
 
 

 
 
 

  

   (30’) 

minimum distance between the stripes, and ϕkj is the angle between their 

axis.  

 

IV. Inhomogeneous distribution of coupling constants. 3D case. 

A. Inhomogeneous coupling constant; a.c. responce 

 As was noted above, the inhomogeneity of the superconductor can be 

caused by a non-uniform distribution of pair-breakers or by inhomogeneity 
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of the coupling constant λ . [1]. Above (Secs. II, III) we focus on the 

inhomogeneity of the pair-breakers, so that the superconducting “islands” 

contain relative small number of such scatters and, as a result, 

characterized by larger value of T

≡ λ (r)

C. Consider now the case of non-uniform 

distribution of the coupling constant. One can show that the a.c. response in 

this case is described by relations similar to those obtained above with 

some modification of the parameters. 

 The dependence λ(r) −1 can be written in the form: 

 λ(r) −1 = λo −1
− Λ(r)         (31) 

where the first term on the right side corresponds to the average value of 

the coupling constant. Consider a linear equation which follows directly from 

Eq. (2’’’) with λ : ≡ λ (r)

 λo −1
− Λ(r)( )̃  ∆ − 2πT ˆ L −1

ω n > 0
∑ ˜ ∆ = − ˜ ˜ µ ̃  ∆       (31’) 

ˆ L  is defined by Eq. (3).  

 By an analogy with previous treatment, the solution of Eq. (2’’’) can be 

seeked in the form ∆ = Bλ
˜ ∆ . We will not write out the explicit expression for 

Bλ.  

 If Λ is small, its contribution can be treated as a perturbation. Then 

the equation for ∆  in a main approximation has a form: 

 

˜ 

ln TC
o / T( ){ − Ψ

/ 4π

0.5 + Γ / 2πT( )( )− Ψ 0.5( )( )+

+Λ(r) + D T( )Ψ ' 0.5 + Γ / 2πT( )( )∂ 2 / ∂r2 }̃  ∆ = ˜ ˜ µ ̃  ∆ 
  

 17 

As a result, we obtain the expressions for the conductivity σ similar to Eqs. 

(20), (25) with the replacement . ˜ µ → ˜ ˜ µ 



B. 3D inhomogeneous system 

 We focused above on the layered inhomogeneous superconducting 

systems. This is, indeed, the most important case (see below, Sec. V). 

However, one should note that a similar “pseudogap” scenario might occur 

for 3D inhomogeneous system. Let us describe also this case. All general 

equations (Sec II) are applicable also for the 3D system. The general 

equation for the a.c. conductivity, Eq. (20) is also valid; it contains a sum 

over 3D superconducting “clusters”. The normalized solution of Eq. (13) in 

this case has a form: 

   (32) 
˜ ∆ = C3D / ρ( )δΓ / δΓ − ˜ µ ( )( )1 / 2

exp −tρ0( )sin kρ( ); ρ < ρ0

˜ ∆ = C3D / ρ( )exp −tρ( ) ρ > ρ0

Here ρ0 is the radius of the “cluster”; t and κ are defined by Eq. (23); we will 

not write out the explicit expression for the normalization constant C3D.  

 In the 3D case there is a minimum value of δΓ for an appearance of 

the eigenvalue, and consequently, for a formation of the superconducting 

“cluster”. Namely, the condition 2δΓ / D( )1 / 2 ρ0 ≥ π / 2  should be satisfied. 

 Consider the region close to Tc
*, where the distance between the 

“clusters” is large, so that rk − rj >> ρ0 ; D / 2 ˜ µ ( )1/ 2 . Based on Eqs. (20), (32), 

one can calculate the a.c. conductivity. For the imaginary part σ2 we obtain 

the expression (cf. (25))  

    (33) 

σ2 = σ / 3πTVω( )ψ ' 0.5 + Γ∞ / 2πT( )×

× D / 2 ˜ µ ( )1/ 2
+ δΓ δΓ − ˜ µ ( )−1

ρo + D ˜ µ / 2( )1/ 2 /δΓ[{ }−1

×

× Ikj
3D

kj
∑

]
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where Ikj
3D = B2 rk − rj exp −t rk − rj − 2ρ0( )[ ]. 

Note that the impact of inhomogeneity of superconducting properties 

is manifested much stronger for the layered structure. We will discuss it in 

more detail below (see Sec. V). Qualitatevely, it is due to the fact that the 

proximity effect which depresses the superconducting state is manifested 

much stronger in the 3D case when the superconducting “cluster” is affected 

by the normal matrix in all spatial directions. The layering is more efficient 

for the “pseudogap” phenomenon.  

V. Discussion 

 We have evaluated the a.c. response (see Eqs. (25) - (28)) of an 

inhomogeneous superconductor in the pseudogap region (Tc
res < T < Tc

*). 

This region is characterized by superconducting “islands” embedded in a 

normal metallic matrix.  

 The surface impedance is described by Eq.(27), (28). The strong 

inequality ReZ ≠ |ImZ| is caused by the presence of superconducting 

“islands” and is described by the second term in Eq. (28). The frequency 

dependence (∝ω-1) of this term can be measured experimentally. It would be 

interesting to carry out such measurements to verify our approach. The 

quantity s depends on a number of experimentally accessible parameters, 

including geometry. For example, if we assume the values: 

 TC
* = 200K,  TC

res  = 110K; Γ , ∞ =160K

 ,  (34) ρ = 2.5ξ; ξ = D / TC( )1/ 2
, nS ≅10−2, ω = 2π1010 s −1

we obtain: 
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        (35) s ≅ 4 • 108 s−1K−1

Measurements of Z for HgBa2Ca2Cu3O8-δ compound at T > TC
res were 

performed in [28]. It has indeed been observed that the slopes of the 

temperature dependences are different meaning that ReZ ≠ ImZ. With the 

experimentally determined value of the slope, we can calculate the 

parameter s, and it turns out to be close to the value (35). This collaborates 

our choice of parameters. 

 We think that a detailed a.c. response study of such materials should 

be based on a combination of various properties. For example, one can 

employ microwave and tunneling measurements. Indeed, the absolute value 

of the real part of impedance, ReZ, can be measured directly. However, this 

is not the case for ImZ; only the slope of the ImZ can be measured. This is 

sufficient to obtain an essential information. Indeed, if the slopes for ReZ 

and ImZ are different, it can be concluded that ReZ ≠ |ImZ|. On the other 

side, the tunneling measurements allow one to determine TC
*. By putting 

Re Z ≅ Im Z  at T = TC
*, and using the slope of ImZ (from microwave data), 

one can obtain complete description on the a.c. response. It would be 

interesting to perform a.c. measurements and tunneling spectroscopy on the 

same sample.  

 As mentioned above, the presence of superconducting regions 

embedded in normal matrix is manifested stronger in layered structure as 

compared to 3D systems. Indeed, for the same set of the parameters as for 

the 2D case (see Eq. (34)), one calculates that the same value of s requires 

the concentration of “clusters” to be on order of 5 , which is much higher ⋅10−2

 20 



than n  (see Eq. (34)). Therefore, layering leads to a much stronger 

effect.  

2D ≅10−2

As far as cuprates are concerned, it is beneficial to use samples with 

composition far from the optimum doping. Indeed, according to neutron data 

[15, 16], such compound possess intrinsic inhomogeneity which, according 

to tunneling data [3 - 5], correlates with the appearance of the pseudogap 

phenomenon. 

 Recent tunneling data [13] indicates that superconducting “islands” 

are present in the Na-doped WO3 compound. It would be interesting to 

perform microwave measurements for these samples.  

 Recently studied Pb + Ag system [14] displays a combination of 

normal resistance and gap structure. We think that its a.c. response can 

also be described by the theory developed here. A more detailed analysis of 

this system and of Na + WO3 will be described elsewhere. 

 

 

 

VI. Summary. Acknowledgments. 

 An inhomogeneous system containing superconducting regions 

(“islands”) embedded in a normal matrix is characterized by peculiar a.c. 

transport. Its d.c. conductivity is normal, but the presence of the “islands” 

results in the strong inequality ReZ ≠ |ImZ|, in sharp contrast with the 

situation in normal metals. The difference is caused by an additional term 

proportional ω-1/2 (Eq. (28)), and smallness of ω has a noticeable impact on 
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microwave properties. The analysis of the a.c. response described above is 

based on our approach described in [1, 2] and is related to the pseudogap 

phenomenon in the cuprates [3 - 12], and to the observed properties of Na + 

WO3 [13] and Ag + Pb systems [14]. We hope that interesting experimental 

studies of the microwave properties of such systems will be performed in 

the near future. 

 The research of Y.N.O. was supported by the CRDF under Contract 

No. RP1-2251. The research of V.Z.K. was supported by the US office of 

Naval Research under Contract No. N00014-01-F0092 

  

 

 

 

 

 

Appendix 

1. In the presence of an external a.c. field the Green’s function is presented 

by Eq. (5). The correction caused by the a.c. in the “dirty” limit is a solution 

of the equation (see [25]): 
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−iω+ ˆ σ z ˆ G 1 + iωn
ˆ G 1 ˆ σ z + eϕ ˆ G 0(ωn ) − ˆ G 0 (ω+ )( )− ˆ ∆ 1 ˆ G 0 (ωn ) + ˆ G 0 (ω+ ) ˆ ∆ 1 −

−i∆ ˆ σ y ˆ G 1[ ]= −eDA1 ˆ σ z ˆ G 0 (ωn )∂ / ∂rG0(ωn )( −

−G0(ω+)∂ / ∂rG0 (ω+) ˆ σ z)− eD∂ / ∂r A1G0 (ω +) ˆ σ zG0(ωn )( )− iD∂ / ∂r ˆ G 1∂ / ∂r ˆ G 0 ωn( )+ G0 ωn( )∂ / ∂rG1( )
+ i / 2( )Γ r( ) ˆ σ z , ˆ G 1 ˆ σ z ˆ G 0 (ωn ) + ˆ G 0 (ω +) ˆ σ z ˆ G 1[ ]+

+eD ˆ σ z divA1 (A.1)
    

with use of Eqs. (7’), (A.1) and performing an analytical continuation (see 

[24], [29]), we obtain:  

     

    (A.2) 

j = iσωA1 − σA1 ∆2 /πT( )ψ ' 0.5 + Γ∞ / 2πT( )−

− iσ / 2eπT( )ψ ' 0.5 + Γ∞ / 2πT( ) ∆ ∂∆1 / ∂r( )− ∆1 ∂∆ / ∂r( )[ −

− iσ / 2e( )I1(ω)
]

I1(ω) is defined by Eq. (10’) with the replacement W . One can 

show also that in a main approximation ∆

ε( ) → ∂ / ∂r

2 = -∆1.  

 Indeed, consider two regions for the variable ωn. In the region  

I (sign(ωn + ω0) = sign(ωn) the function f1 is the solution of the equation 

    (A.3) 
−i ω+ + ωn( )f1 + ieϕ β+ − β( )+ ∆1 α + +α( )=

= ieDA1 α∂β / ∂r +α +∂β+ / ∂r( )+ ieD∂ / ∂r A1{ α+( β +

+αβ+ )}− iD∂ / ∂r α +∂f1 / ∂r( )+ iΓ α + + α( )f1

The function g1 is determined in this region by the relation 

. g1 = i β+ − β( )α+ + α( )−1 f1

 For the region II (sign(ωn + ω0) = -sign(ωn), one can write in a similar 

way the equation for the function g1. As for the function f1, it can be found as 

. It is essential that in a whole region we have gf1 = i β+ + β( )α + − α( )−1
g1 1 = g2 

and f1 = -f2. The last relations leads to the relation ∆1 = -∆2.  
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Eq. (A.2) contains the potential ϕ which can be excluded with use of 

the condition (9). Based on Eq. (7’), (A.2) we arrive at the expression for the 

a.c. conductivity (8). 

 

2. With the use of Eqs. (10), (13) we obtain  

     (A.4) 

ˆ µ −δΓ − D / 2( )∂ 2 / ∂r2 − iω / 2[ ]∆1 =

= −2ie DA1 ∂∆ / ∂r( )− ieD divA1( )∆ −

− 2πT / Ψ' 0.5 + Γ∞ / 2πT( )( )I ω( )

 

)

where I(ω) is determined by Eq. (10’). 

The scalar potential ϕ can be excluded with use of the equation: div j = 0. 

As a result, we obtain: 

   (A.5) −eD ∂ 2ϕ / ∂r2 = ieω / πT( )Ψ ' 0.5 + Γ∞ / 2πT( ) A1 r − rj( )(
j

∑ ∆ j
2

Based on Eqs. (18), (A.4) and (A.5), we arrive for an isotopic distribution of 

the “islands” at Eq. (20).  

 

3. Eq. (14) contains the quantities u and ν These parameters can be 

calculated for different cases. For example, for the “stripe” geometry  

(see Sec. 3B), one can obtain: 

     (A.6) 

u = dx ˜ ∆ 4∫ = C4 / 2( )3a / 4 +κ −1 sinκa +[
+ 1/ 8( )κ −1 sin2κa + t−1 cos4 0.5κa( )]
v = dx ∂ ˜ ∆ 2 / ∂r( )∫

2
= C4 2t cos4[ κa / 2( )+{

+ κ / 2( )κa − 0.5sin 2κa( )[ ]}

The quantities C, κ, t are defined by Eqs. (22), (23). 
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 Based on Eqs. (13), (21), one can calculate these quantities for the 

2D “islands”. For example, if we consider the case with parameters,  

(see Eq. (34)), we obtain υ . = 0.06ξ −2 , ν = 9 ⋅10−3ξ−4
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